
Advanced Mathematical Models & Applications
Vol.3, No.2, 2018, pp.106-116

NEW SYMPLECTIC 6-MANIFOLDS VIA COISOTROPIC LUTTINGER
SURGERY

Anar Akhmedov1∗

1School of Mathematics, University of Minnesota, Minneapolis, MN, 55455, USA

Abstract. In this paper, we study the coisotropic Luttinger surgery on several families of non-simply con-
nected symplectic 6-manifolds. First, we show that the appropriate number of such surgeries on some of these
symplectic 6-manifolds produce the simply connected symplectic and non-Kähler symplectic 6-manifolds. Next,
using coisotropic Luttinger surgery along T2×T2, we show that for each finitely presented group G, there exists a
family of symplectic 6-manifolds with fundamental group G. We also produce a variety of interesting symplectic
6-manifolds via the coisotropic Luttinger surgery on symplectic 6-manifolds such as Σg ×Σg ×Σg for any g ≥ 2,
and on symplectic 6-manifold M = (Σ2×T2×T2)#Σ2×T2((T2×S2#4CP2)×T2), which is obtained via symplectic
connected sum.

Keywords: symplectic 6-manifolds, Luttinger surgery, fundamental group.

AMS Subject Classification: Primary 57R55; Secondary 57R17.
Corresponding author: Anar Akhmedov, School of Mathematics, University of Minnesota, Minneapolis, MN,

55455, USA, e-mail: akhmedov@math.umn.edu

Received: 10 June 2018; Revised: 30 July 2018 ; Accepted: 09 August 2018 ; Published: 31 August 2018

1 Introduction

This paper is a belated sequel to (Akhmedov, 2014) in which the author constructed the ex-
amples of simply connected symplectic Calabi-Yau 6-manifolds using the coisotropic Luttinger
surgery along T2 × T2. In the same paper, the author also obtained non-Kähler symplectic
Calabi-Yau 6-manifolds with b1 = 1 using the same surgery technique and also the symplectic
connected sum operation. In this paper, we construct many new examples of simply connected
symplectic 6-manifolds using coisotropic Luttinger surgery. Some of these examples presented in
this article were mentioned in Akhmedov (2014), and the author promised to bring more details
in future articles. The second goal of this article is to prove that for any finitely presented
group G, there exists a family of symplectic 6-manifolds with π1 = G that can be obtained via
coisotropic Luttinger surgery along T2 ×T2. This provides a new proof of the classical result in
Gompf (1995), which was proved using the symplectic connected sum operation.

Throughout this paper CP2 denote the complex projective plane and CP2 is the complex-
projective plane with the reversed orientation. Let X(g, n), Y (g, n), and Z(g, n) denote n fold
symplectic fiber sum of the total spaces of three well known genus g hyperelliptic Lefschetz
fibrations along a regular fiber Σg, given by the monodromies (a1a2 · · · a2g+1

2 · · · a2a1)2 = 1,
(a1 · · · a2g+1)

2g+2 = 1, and (a1 · · · a2g)4g+2 = 1 respectively, in the mapping class group Mg of
the genus g surface with no punctures.

Our main results are the following four theorems.

Theorem 1. There exist symplectic 6-manifolds with the fundamental groups

(i) 1,

(ii) Zp × Zq, and Z× Zq for any p ≥ 2 and q ≥ 1
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that can be obtained from X(g, n)× T2, Y (g, n)× T2 and Z(g, n)× T2 by coisotropic Luttinger
surgeries along T2 × T2 for any n ≥ 2 and g ≥ 2.

Notice that the Lefschetz fibrations on X(g, n), Y (g, n) and Z(g, n) have genus g ≥ 2. We
may view the above theorem as a generalization of the results of Akhmedov (2014), where the
case g = 1 was considered, and symplectic Calabi-Yau 6-manifolds were constructed.

Our next theorem is a six-dimensional versions of the construction of symplectic 4-manifolds
in Akhmedov (2008), Akhmedov & Park (2008), Akhmedov et al. (2008), Akhmedov & Park
(2010), Akhmedov & Saglam (2015), Akhmedov & Ozbagci (2017) via Luttinger surgery (see
Akhmedov (2008), Akhmedov & Park (2008), Akhmedov et al. (2008), Akhmedov & Park (2010),
Akhmedov & Saglam (2015), Akhmedov & Ozbagci (2017) for motivation and details).

Theorem 2. There exist symplectic 6-manifolds with the following fundamental groups

(i) 1,

(ii) Zp × Zq1 · · · × Zq5, and Zl × Zq1 × · · ·Zq6−l
for any p ≥ 2, qi ≥ 1, and 1 ≤ l ≤ 5

that can be obtained from the symplectic connected sum manifoldM = (Σ2×T2×T2)#Σ2×T2((T2×
S2#4CP2)× T2) by coisotropic Luttinger surgeries.

Our next set of symplectic 6-manifolds, given in Theorems 3, are obtained by performing
1 ≤ k ≤ 6g coisotropic Luttinger surgeries on Σg × Σg × Σg along Σg × T2, where g ≥ 2. These
6-dimensional symplectic 6-manifolds are the analogues of symplectic 4-manifolds constructed
in Akhmedov (2008), Fintushel et al. (2007), Akhmedov & Park (2010).

Theorem 3. There exist symplectic 6-manifolds with following the first homology groups in
integer coefficients

(i) 0,

(ii) Zp × Zq1 · · · × Zq6g−1, and Zk × Zq1 × · · ·Zq6g−k
for any p ≥ 2, qi ≥ 1, and 1 ≤ k ≤ 6g − 1

that can be obtained from Σg × Σg × Σg by coisotropic Luttinger surgeries along Σg × T2.

The following theorem is more general, and allows us to handle the case of an arbitrary
finitely presented group as the fundamental group.

Theorem 4. There exist symplectic 6-manifolds with the fundamental groups

(i) 1,

(ii) Any finitely presented non-trivial group G given by a presentation ⟨x1, . . . , xk | l1, . . . lm⟩.

that can be obtained from X(g, n)×Σk, Y (g, n)×Σk and Z(g, n)×Σk via coisotropic Luttinger
surgeries along T2 × T2 for any n ≥ 2, and g ≥ k ≥ 2 and g ≥ k +m ≥ 2, respectively.

Our paper is organized as follows. Section 2 contains a brief review of the coisotropic
Luttinger surgery. In Section 3, we collect symplectic building blocks that are needed in our
construction of symplectic 6-manifolds. In Section 4, we construct symplectic 6-manifolds via
coisotropic Luttinger surgery and present proofs of our main Theorems 1, 4, 2, and 3 in the given
order. While the motivation of this paper is not to construct symplectic Calabi-Yau 6-manifolds,
some of our bulding blocks can be used to be obtain new symplectic Calabi-Yau 6-manifolds in
dimension 6 (see the author work in Akhmedov (2014)). The author will address this case in a
separate article to follow.
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2 Coisotropic Luttinger Surgery

In this section we will briefly review the coisotropic Luttinger surgery in dimension six and
recall some basic facts about it. For the details on the coisotropic Luttinger surgery, we re-
fer the reader to Ho (2011), Baldridge & Kirk (2013). The coisotropic Luttinger surgery has
been effective tool recently for constructing symplectic Calabi-Yau 6-manifolds (Akhmedov,
2014), (Baldridge & Kirk, 2013). In this paper, we extend the effectiveness of the coisotropic
Luttinger surgery further by constructing the symplectic 6-manifolds with an arbitrary finitely
presented group as the fundamental group and other interesting examples. We refer the reader to
Akhmedov & Zhang (2015), Akhmedov & Ozbagci (2017), Akhmedov & Saglam (2015), where
the the same problem addressed in dimension 4 using Luttinger surgery.

Definition 1. Let X be a closed symplectic 6-manifold with a symplectic form ω. Suppose that
Σg is a closed 2 dimensional symplectic submanifold of X and there exist a symplectic embedding
j : D2×T2×Σg ↪→ X so that the submanifolds parallel to Λ = {0, 0}×T2×Σg are all coisotropic
with respect to ω. Given a simple loop λ on {0, 0}×T2×pt, let λ′ be a simple loop on ∂(νΛ) that
is parallel to λ under the coisotropic framing. For any integer m, the (Λ, λ, 1/m) coisotropic
Luttinger surgery on X will be XΛ,λ(1/m) = (X \ν(Λ))∪ϕ (T2×Σg×D2), the 1/m surgery on Λ
with respect to λ under the coisotropic framing. Here ϕ : T2 ×Σg × ∂D2 → ∂(X \ ν(Λ)) denotes
a gluing map satisfying ϕ([∂D2]) = m[λ′] + [µΛ] in H1(∂(X \ ν(Λ)), where µΛ is a meridian of
Λ.

It can be shown that XΛ,λ(1/m) possesses a symplectic form that restricts to the original
symplectic form ω on X\νΛ. The following Lemma is an easy consequence of the the Seifert-Van
Kampen’s Theorem.

Lemma 1. Let XΛ,λ(1/m) is obtained from X by 1/m coisotropic Luttinger surgery along the
submanifold Λ = T2×Σg of X, then the Euler characteristic is unchanged, e(X) = e(XΛ,λ(1/m)).
The fundamental group of XΛ,λ(1/m) is the quotient of π1(X \ (T2 × Σ2 ×D2)) by the normal
subgroup generated by a homotopy class of the circle ϕ(pt × ∂D2). Thus, π1(XΛ,λ(1/m)) =
π1(X \ Λ)/N(µΛλ

′m).

3 Symplectic Building Blocks

In this section, we review the families of Lefschetz fibrations X(g, n), Y (g, n) and Z(g, n), and
Matsumoto’s genus two fibration mentioned in the statments of Theorems 1, 4 and 2 .

3.1 Three familes of hyperelliptic fibrations

Let α1, α2, · · · , α2g, α2g+1 denote the collection of simple closed curves given in Figure 1, and ci
denote the right handed Dehn twists tαi along the curve αi. It is well-known that the following
relations hold in the mapping class group Mg:

Γ1(g) = (c1c2 · · · c2g−1c2gc2g+1
2c2gc2g−1 · · · c2c1)2 = 1,

Γ2(g) = (c1c2 · · · c2gc2g+1)
2g+2 = 1,

Γ3(g) = (c1c2 · · · c2g−1c2g)
2(2g+1) = 1.

(1)

For the first monodromy relation given above, the corresponding genus g Lefschetz fibrations
over S2 has total space X(g, 1) = CP2#(4g + 5)CP2, the complex projective plane blown up at
4g+5 points. In the case of second and third relations, the total spaces of the corresponding genus
g Lefschetz fibrations over S2 are also well-known families of complex surfaces. For example.
Y (2, 1) = K3#2CP2 and Z(2, 1) = Horikawa surface, respectively. Moreover, it is easy to see
that the monodromy relations of the genus g fibrations on X(g, n), Y (g, n) and Z(g, n) are given
by the words Γ1(g)

n, Γ2(g)
n, and Γ3(g)

n, respectively.
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Figure 1. Vanishing Cycles of the Genus g Lefschetz Fibration on X(g, 1) = CP2#(4g + 5)CP2

In Fuller (1999), Fuller (2000), Akhmedov & Monden (2016), the topology ofX(g, n), Y (g, n),
and Z(g, n) studied in a greater details. It is known that the complex surfaces X(g, n), Y (g, n),
and Z(g, n) have a decomposition analogous to Gompf’s decomposition for elliptic surfaces. For
example, X(g, n) =W (g, n)∪N(g, n), where W (g, n) is diffeomorphic to the Milnor fiber of the
Brieskorn homology 3-sphere Σ(2, 2g + 1, (4g + 1)n − 1) and N(g, n) is a generalized nucleus,
small submanifold with b2 = 2. Similar decompositions hold for Y (g, n), and Z(g, n). We refer
the reader to the papers Fuller (1999), Fuller (2000), Akhmedov & Monden (2016). The case
g = 1 is the well known decomposition for elliptic surfaces.

Now, we think of X(g, 2) as the fiber sum of two copies of X(g, 1) = CP2#(4g + 5)CP2

along a regular fiber Σg. Using the decomposition X(g, 1) = W (g, 1) ∪ N(g, 1), we obtain the
following decomposition of the intersection form of X(g, 2): 2M(g, 1)⊕H ⊕ 2gH, where H is a
hyperbolic pair and M(g, 1) is a matrix whose entries are given by a negative definite plumbing
tree given in the Figure 2. The classes that generates M(g, 1) all can be represented by spheres
of negative self-intersection. One copy of H comes from a fiber Σg and a sphere section σ of
self-intersection −2, i.e. from the nucleus N(g, 2) in X(g, 2). The remaining 2g copies of H come
from 2g rim tori and their dual −2 spheres (see related discussion in Gompf & Stipsicz (1999),
page 73)). These 12g + 4 classes (10g + 9 spheres and 2g + 1 tori) generate H2(X(g, 2),Z). In
fact, a straightforward generalization of our argument gives the following decomposition of the
intersection form of X(g, n): n(M(g, 1))⊕H ⊕ 2g(n− 1)H,

Figure 2. Plumbing Tree for the Milnor Fiber W (g, 1)

Similarly, it is easy to obtain a decompositions of the intersection form of Y (g, n) and Z(g, n).
We leave the details to the reader (see (Gompf & Stipsicz, 1999), (Fuller, 1999), (Fuller, 2000),
(Akhmedov & Monden, 2016)).

3.2 Matsumoto fibration and their higher-genus generalizations

Yukio Matsumoto’s genus two Lefschetz fibration can be conveniently described as the double
branched cover of S2×T2 with the branch set being the union of two disjoint copies of S2×{pt}
and two disjoint copies of {pt} × T2. The resulting branched cover has 4 singular points,
corresponding to the number of intersections of the horizontal spheres and the vertical tori in
the branch set. By desingularizing this manifold, we obtain the total space of Matsumoto’s
fibration, M = T2 × S2#4CP2. Notice that the vertical T2 fibration on S2 × T2 pulls back
to give a fibration of T2 × S2#4CP2 over S2. Since a generic fiber of the vertical fibration is
the double cover of T2 branched over 2 points, it is a genus two surface. Matsumoto proved
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that Matsumoto (1996), the above fibration can be perturbed into Lefschetz one with the global
monodromy given by the following word in the mapping class group M2: (D1D2D3D4)

2 = 1,
where D1, D2, D3, and D4 denotes the Dehn twists along the curves β1, β2, β3, and β4 shown
in Figure 3.

Let us denote by Σ the regular fiber of the fibration above, and the images of the standard
generators of Σ in the fundamental group of π1(M) = Z ⊕ Z as a1, b1, a2, and b2. Using a
homotopy long exact sequence for a Lefschetz fibration and the existence of sphere sections, we
have the following identification of the fundamental group of M (Ozbagci & Stipsicz, 2000):

π1(M) = π1(Σ)/⟨β1, β2, β3, β4⟩.

β1 = b1b2, (2)

β2 = a1b1a1
−1b1

−1 = a2b2a2
−1b2

−1, (3)

β3 = b2a2b2
−1a1, (4)

β4 = b2a2a1b1, (5)

Hence π1(M) = ⟨a1, b1, a2, b2 | b1b2 = [a1, b1] = [a2, b2] = b2a2b2
−1a1 = 1⟩.

By Van Kampen’s theorem, the fundamental group of the complement of νΣ in M is Z⊕Z.
This group is generated by a1 and b1, and the normal circle λ = pt× ∂D2 to Σ can be deformed
using −1 sphere section of this fibration. Thus, λ is nullhomotopic in π1(T2×S2#4CP2 \νΣ) =
Z⊕ Z.

Figure 3. Dehn Twists for Matsumoto’s Fibration

4 New Symplectic 6-Manifolds via Coisotropic Luttinger Surgery

In this section we prove our main theorems. For the simplicity, we will consider the case of
two-fold fiber sums only, n = 2, in our proofs of Theorems 1 and 4. The general case is not
different from this special case and the same proof applies verbatim. Throughout most of this
section, Σg will denote a regular fiber of a hyperelliptic fibration on X(g, n).

4.1 Proof of Theorem 1

Proof. Let us take two copies of W (g) = X(g, 1)× T2. We endow both W (g) with the product
symplectic structure ωW and form their symplectic fiber sum along the symplectic submanifolds
Σg × T2 and Σg

′ × T2. To do this, we consider an orientation reversing gluing diffeomorphism
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θ : ∂(Σg × T2 ×D2) −→ ∂(Σ′
g × T2 ×D2) that sends the elements of π1 as follows:

a1 = 1 7→ a′1 = 1,

b1 = 1 7→ b′1 = 1,

· · · ,
· · · ,

ag = 1 7→ a′g = 1,

bg = 1 7→ b′g = 1,

c 7→ c′,

d 7→ d′,

µ = 1 7→ µ′
−1

= 1.

Notice that the resulting symplectic 6-manifold is X(g, 2) × T2. The following two essential
coisotropic submanifolds are available (among many others) to perform coisotropic Luttinger
surgeries in X(g, 2)×T2: T1 := (a′1 × c′)× (r′ × d′) and T2 := (b′1 × d′′)× (r′′ × c′′), where r′ and
r′′ are two disjoint the ”rim” circles ofX(g, 2). InX(g, 2)×T2, these rim circles correspond to the
meridians of Σg ×T2. Moreover, both submanifolds T1 and T2 have dual isotropic submanifolds
Si, which are two dimensional spheres arising from the vanishing cycles a1 and b1. To see this,
notice that each of the above mentioned 4-dimensional torus Ti has a dual circle in Σg × T3

intersecting Ti at a point. The dual spheres S1 and S2 are obtained by contracting the circles
a1 and b1 on both sides. Since X(g, 2) is simply connected and has a sphere section, a1 and
b1 are both null-homotopic in the fundamental group of complement. Thus, we can use two
vanishing disks for a1 and b1 to construct the spheres S1 and S2. Furthemore, the meridional
circles of Ti lies on Si, thus it null-homotopic in the fundamental group of complement of
π1(X(g, 2)× T2 \ (ν(T1) ∪ ν(T2)).

Let X(g, 2)p,q be symplectic 6-manifold gotten by performing the following two coisotropic
Luttinger surgeries on pairwise disjoint coisotropic submanifolds T1 and T2 in X(g, 2) × T2:
(T1, cp,±1) and (T2, dq,±1), where p, q ≥ 0. Using the Lemma 1, we obtain the following
presentation for the fundamental group of X(g, 2)p,q:

cp = µ1 = 1, dq = µ2 = 1, [c, d] = 1. (6)

The first coisotropic Luttinger surgery gives the relation cp = 1 and the second surgery produces
the relation dq = 1 in π1(X(g, 2)×T2) = Z×Z. Thus, we can realize any of the folowing abelian
groups: Zp × Zq for p, q ≥ 1, Z × Zp for p = 0, p ≥ 2. If we set p = q = 1, then X(g, 2)1,1 has
a trivial fundamental group. By setting p = 1, q = 0 or p = 0, q = 1, we get the symplectic
6-manifolds X(g, 2)1,0 and X(g, 2)0,1 with fundamental group Z. Since the fist Betti numbers of
X(g, 2)1,0 and X(g, 2)0,1 b1 = 1 are odd, they are both non-Kähler symplectic 6-manifolds.

The constructions for the cases Y (g, 2)×T2 and Z(g, 2)×T2 are analogous. Again, the key
idea is to use the rim tori in Y (g, 2) and Z(g, 2) resulting from the symplectic fiber sum. These
homologically essential rim tori do not exist in X(g, 1), Y (g, 1) and Z(g, 1), and arises via fiber
sum. This concludes the proof of Theorem 1.

Remark 1. Our construction above can be modified to get a family of symplectic (both Kähler
and non-Kähler) 6-manifolds starting with two copies of V (g, n) = X(g, n) × Σg and forming
their the symplectic connected sum along the 4-dimensional symplectic submanifolds Σg × Σg
using any orientation reserving gluing diffeomorphism Ψ : ∂(Σg ×Σg ×D2) → ∂(Σg ×Σg ×D2).
In a special case, we can choose our gluing diffeomorphism Ψ that comes from an orientation
preserving diffeomorphism ψ of Σg×Σg which interchnages the product copies Σg×pt and pt×Σg
of Σg × Σg, i.e. the gluing diffeomorphism Ψ that sends the elements of π1 as follows:

a1 = 1 7→ c′1 = 1,

b1 = 1 7→ d′1 = 1,
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· · · ,
· · · ,

ag = 1 7→ c′g = 1,

bg = 1 7→ d′g = 1,

c1 = 1 7→ a′1 = 1,

d1 = 1 7→ b′1 = 1,

· · · ,
· · · ,

cg = 1 7→ a′g = 1,

dg = 1 7→ b′g = 1,

µ = 1 7→ µ′
−1

= 1.

In this special case, the above construction yields to the simply connected symplectic 6-manifold
Xn,g,ψ and generalizes the construction given in Akhmedov (2014) where g = 1 was studied.

Remark 2. In the construction above, we could have chosen to perform the coisotropic Luttinger
surgeries along Σg × T2 using the coisotropic submanifolds L1 := Σ′

g × (r′ × c) and L2 :=
Σ′′
g × (r′′ × d), where r′ and r′′ are the ”rim” circles in X(g, 2), and Σ′

g and Σ′′
g are two special

fibers of the genus g Lefschetz fibration on X(g, 2) dual to the rim circles r′ and r′′. The
submanifolds L1 and L2 have dual isotropic tori of the form T1 = a′′′1 × d and T1 = a′′′2 × c. The
fundamental group computation follows the same steps as before.

Our next theorem can be viewed as 6-dimensional version of the 4-manifold construction
given in Akhmedov & Ozbagci (2017). We refer the reader to Akhmedov & Ozbagci (2017) for
more details and for related results.

4.2 Proof of Theorem 4

Proof. The proof of the first part of the theorem is similar to that of Theorem 1. First, using the
rim circles ri, ri

′ (for i = 1, · · · , k ) of the fiber Σg and the vanishing cycles ai, bi (for i = 1, · · · , k)
of the genus g Lefschetz fibration on X(g, 2), we construct 2k homologicall essential disjoint rim
tori R2i−1 := ai × ri and R2i := bi × ri

′, their dual Lagrangian tori T2i−1 := R2i−1 + S2i−1 and
T2i := R2i + S2i, where the spheres S2i−1 and S2i are obtained by contracting the circles bi and
ai on both sides, using the vanishing disks of bi and ai. These spheres S2i−1 and S2i have the
self-intersection −2 in X(g, 2).

Next, using the cycles ci, di (for i = 1, · · · , k) of Σk, we see that the symplectic 6-manifold
X(g, 2)×Σk contains at least 2k disjoint essential coisotropic submanifolds of the form T2×T2,
which are given by V2i−1 := T2i−1 × (ri × ci) and V2i := T2i × (ri

′ × di).
Let X(g, 2)(p1, q1, · · · , pk, qk) denote be symplectic 6-manifold gotten by performing the fol-

lowing 2k coisotropic Luttinger surgeries on Vi in X(g, 2)×Σk: (V1, c1
p1 ,±1), (V2, d1

q1 ,±1), · · · ,
(V2k−1, ck

pk ,±1), (V2k, dk
qk ,±1), where ci, di denote the standard generators of π1(X(g, 2) ×

Σk) = π1(Σk) and pi, qi ≥ 0 are integers.
4-tori V2i−1 and V2i−1 have a transversal isotropic 2-tori U2i−1 := bi × di and U2i := ai × ci

respectively. The meridional circles µi of Vi are all null-homotopic in π1(X(g, 2)×Σk \ (ν(V1)∪
ν(V2)∪· · ·∪ν(V2k)) since the loops ai and bi are nullhomotopic. Furthermore, using the Lemma 1,
we acquire the following presentation for the fundamental group of X(g, 2)(p1, q1, · · · , pk, qk):

c1
p1 = µ1 = 1,

d1
q1 = µ2 = 1,

· · · ,
· · · ,
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ck
pk = µ2k−1 = 1,

dk
qk = µ2k = 1,

Πkj=1[cj , dj ] = 1.

By setting p1 = q1 = · · · = pk = qk = 1, we obtain a symplectic 6-manifold X(g, 2)(1, 1, · · · , 1, 1)
with trivial fundamental group.

Now, let G = ⟨x1, . . . , xk | l1, . . . lm⟩ be any finitely presented group with the given pre-
sentation. We start with the symplectic manifold X(g, 2) × Σk and fix a collection of simple
loops ci and di representing the standard generators of the fundamental group of X(g, 2) × Σk
given as above. Next, we choose m additional curves γj in Σg representing the relations lj
(for j = 1, · · · ,m). Without loss of generality, we can assume that the curves γj are em-
bedded. This can be achieved because of the assumption that g ≥ k + m (see discussion in
(Akhmedov & Ozbagci, 2017), pages 10-12 and (Akhmedov & Zhang, 2015)). To clarify this
point further (see (Akhmedov & Ozbagci, 2017; Akhmedov & Zhang, 2015)), note that by using
a 1-handle attachments to Σk, we can resolve the intersection points of γj : make the curve γj to
go over using the attached 1-handle, remove all intersection points, make the resulting curves γ′j
embedded in Σg, and start with the building block X(g, 2)×Σg, instead of X(g, 2)×Σk. To ob-
tain the given presentation, we do need to perform extra 2(k−g) coisotropic Luttinger surgeries
along (V2k+1, ck+1,±1), (V2k+2, dk+1,±1), · · · , (V2g−1, c2g−1,±1), (V2g, d2g,±1) in X(g, 2)×Σg,
which amount to the killing all extra 2(g−k) the fundamental group generators ck+1, dk+1, · · · ,
c2k, d2k of X(g, 2)× Σg.

Let X(g, 2)(0, q1, · · · , 0, qk) denote the symplectic 6-manifold obtained by performing the fol-
lowing 2k coisotropic Luttinger surgeries on Vi in X(g, 2)× Σk: (V2, d1,±1), · · · , (V2g, dk,±1).
By our discussion given above, the symplectic 6-manifold X(g, 2)(1, 0, · · · 1, 0) has the fundamen-
tal group Fk, a free group of rank k. Finally, by performing m additional coisotropic Luttinger
surgeries on submanifolds Lj := T2j−1×(rj×γj) and L2j := T2j×(rj

′×γj+1), where k+1 ≤ i ≤ g,
in X(g, 2) × Σk: (L1, γ1,±1), · · · , (Lm, γm,±1), we introduce the needed relations li in order
to collapse the free group Fk into G. The cases Y (g, 2)×Σk and Z(g, 2)×Σk treated similarly
and we leave the details to the reader. This concludes the proof of the theorem.

4.3 Proof of Theorem 2

Proof. We will consider the symplectic 6-manifolds Σ2 × T2 × T2 and (T2 × S2#4CP2) × T2,
both endowed with the standard product symplectic structures. Let us denote the generators of
the fundamental group of Σ2 × T2 × T2 as a1, b1, a2, b2, c, d, e and f , and of the fundamental
group of (T2 × S2#4CP2)× T2) as c1, d1, x, and y.

We consider an orientation reversing gluing diffeomorphism θ′ : ∂(Σ2 × T2 ×D2) −→ ∂(Σ×
T2 ×D2) that sends the elements of π1 as follows:

a1 7→ c1,

b1 7→ d1,

a2 7→ c1
−1,

b2 7→ d1
−1,

c 7→ x,

d 7→ y,

µ 7→ µ′
−1
.

Let M denote their symplectic connected sum along the symplectic submanifolds Σ2 × T2 × pt
and Σ×T2 given by θ′, where Σ is a regular fiber of Matsumoto’s genus two fibration (See Section
3.2). By Seifert-Van Kampen theorem, the fundamental group of the resulting manifold M can
be seen to be generated by a1, b1, c, d, e, and f which all commute with each other. Thus,
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the fundamental group of M is π1(M) = Z6. The following six disjoint essential coisotropic
submanifolds, four of the form T2 × T2 and two of the form Σ2 × T2, are available to perform
coisotropic Luttinger surgeries in M : S1 := a′1 × c′ × d′ × e′, S2 := b′1 × c′ × d′ × e′′, S3 :=
a′2 × c′ × d′ × e′, S4 := a′′2 × c′ × d′ × f ′, U1 := Σ2 × c′ × e′, and U2 := Σ2 × d′ × e′′. Moreover,
we have the following obvious dual isotropic two tori: T1 := b′1 × f ′, T2 := a′1 × f ′, T3 := b′2 × f ′,
T4 := b′2 × e′, V1 := d′ × f ′, and V2 := c′ × f ′. Using these 2-dimensional tori, we will determine
the meridional circles to the six coisotropic submanifolds listed above.

LetM(p, q1, · · · q5) be symplectic 6-manifold gotten by performing the following six coisotropic
Luttinger surgeries on pairwise disjoint coisotropic submanifolds S1, S2, S3, S4, U1, and U2 in
M : (S1, a

′
1
p,−1), (S2, b

′
1
q1 ,−1), (S3, e

′q2 , 1), (S4, f
′q3 , 1), (U1, c

q4 ,−1), and (U2, d
q5 ,−1), where

p, qi ≥ 0.
Using the Lemma 1, we obtain the following presentation for the fundamental group of

M(p, q1, · · · q5):

a1
p = [b1

−1, f−1], a2
q1 = [a−1

1 , f ], eq2 = [b2
−1, f−1],

f q3 = [e−1, b−1
2 ], cq4 = [d−1, f−1], dq5 = [c−1, e],

[a1, c] = [a1, d] = [a1, e] = 1, [b1, c] = [b1, d] = [b1, e] = 1

[c, f ] = [c, d] = [d, e] = 1

a1a2 = [a1, b1] = [a2, b2] = b1b2 = 1

By setting p = q1 = · · · = q5 = 1, we obtain a symplectic 6-manifold M(1, 1, · · · , 1) with trivial
fundamental group. To prove π1(M(1, 1, · · · 1)) = 1, it is enough to prove that f = 1, which
in turn will imply that all other generators are trivial. Using the last set of identities, we have
a2

−1 = a1, · · · , b2
−1 = b1. Now, we rewrite the relation f = [e−1, b−1

2 ] = [e−1, b1] . Since
[b1, e] = 1, we obtain f = 1. To realize the fundamental groups stated as in (ii), we simply vary
p ≥ 2, qi ≥ 1 or set p1 = q5 = · · · q6−l+1 = 0 and qi ≥ 1 for 1 ≤ i ≤ 6 − l, respectively, in the
presentation above.

4.4 Proof of Theorem 3

Proof. LetX(g, g, g) be the product 6-manifold Σg×Σg×Σg equipped with the product symplec-
tic structure. Let us denote the standard generators of the fundamental group of X(g, g, g) as a1,
b1, · · · , ag, bg, c1, d1, · · · , cg, dg, e1, f1, · · · , eg, and fg. Using the product structure and applying
Künneth’s formula, we compute the Euler characteristic and the Betti numbers of X(g, g, g):
χ(X(g, g, g)) = χ(Σg)

3 = 8(1 − g)3, b1(X(g, g, g)) = 6g = b5(X(g, g, g)), b2(X(g, g, g)) =
b0(Σg)·b2(Σg×Σg)+b1(Σg)·b1(Σg×Σg)+b2(Σg)·b0(Σg×Σg) = (4g2+2)+2g(4g)+1 = 12g2+3 =
b4(X(g, g, g)), b3(X(g, g, g)) = b0(Σg) · b3(Σg×Σg)+ b1(Σg) · b2(Σg×Σg)+ b2(Σg) · b1(Σg×Σg) =
4g + 2g(4g2 + 2) + 4g = 8g3 + 12g.

The following 6g homologically essential coisotropic submanifolds of the form Σg × T2 are
available, among many others, to perform coisotropic Luttinger surgeries in X(g, g, g): U0,i,i :=
Σg×c′i×e′i, V0,i,i := Σg×d′i×e′′i , Ui,0,i := a′i×Σg×f ′i , Vi,0,i := a′′i ×Σg×e′i, Ui,i,0 := a′i×d′i×Σg,
and Vi,i,0 := b′i × d′′i × Σg. Moreover, we have the following dual isotropic two dimensional
tori: T0,i,i := d′i × f ′i , T 0,i,i := c′i × f ′i , Ti,0,i := b′i × e′i, T i,0,i := b′i × f ′i , Ti,i,0 := b′i × c′i, and
T i,i,0 := a′i× c′i. Using these dual tori, we will easily identify the the meridional circles to the 6g
aforementioned coisotropic submanifolds and compute the fundamental group of the resulting
symplectic 6-manifold.

LetX(q1, · · · , q6g) be symplectic 6-manifold obtained by performing the following 6g coisotropic
Luttinger surgeries on the above family of pairwise disjoint coisotropic submanifolds U0,i,i, V0,i,i,
Ui,0,i, Vi,0,i, Ui,0,i, and Vi,0,i in X(g, g, g):

(U0,1,1, c
′
1
q1 ,±1), (U0,2,2, c

′
2
q2 ,±1), · · · , (U0,i,i, c

′
i
qi ,±1), · · · , (U0,g,g, c

′
g
qg ,±1),

(V0,1,1, d
′
1
qg+1

,±1), (V0,2,2, d
′
2
qg+1 ,±1) · · · , (V0,i,i, d′i

qg+i−1 ,±1), · · · , (V0,g,g, d′g
q2g ,±1),

(U1,0,1, f
′
1
q2g+1

,±1), (U2,0,2,, f
′
2
q2g+1 ,±1), · · · , (Ui,0,i, f ′i

q2g+i−1 ,±1), · · · , (Ug,0,g, f ′g
q3g ,±1),
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(V1,0,1, e
′
1
q3g+1

,±1), (V2,0,2,, e
′
2
q2g+1 ,±1) · · · , (Vi,0,i, e′i

q3g+i−1 ,±1), · · · , (Vg,0,g, e′g
q4g , 1),

(U1,1,0, a
′
1
q4g+1

,±1), (U2,2,0, a
′
2
q4g+1 ,±1), · · · , (Ui,i,0, a′i

q4g+i−1 ,±1), · · · , (Ug,g,0, a′g
q5g ,±1),

(V1,1,0, b
′
1
q5g+1

,±1), (V2,2,0, b
′
2
q5g+1 ,±1), · · · (Vi,i,0, b′i

q5g+i−1 ,±1), · · · , (Vg,g,0, b′g−1
q6g ,±1),

Using the Lemma 1, we see that the following relations hold in the fundamental group of
X(q1, · · · , q6g):

[d−1
1 , f−1

1 ] = c∓q11 , [d−1
2 , f−1

2 ] = c∓q22 · · · , [d−1
g , f−1

g ] = c
∓qg
g ,

[c−1
1 , f1] = d

∓qg+1

1 , [c−1
2 , f2] = d

∓qg+2

2 , · · · , [c−1
g , fg] = d

∓q2g
g ,

[e−1
1 , b−1

1 ] = f
∓q2g+1

1 , [e−1
2 , b−1

2 ] = f
∓q2g+2

2 , · · · , [e−1
g , b−1

g ] = f
∓q3g
g ,

[f−1
1 , b1] = e

∓q3g+1

1 , [f−1
2 , b2] = e

∓q3g+1

2 , · · · , [f−1
g , bg] = e

∓q4g
g ,

[b−1
1 , c−1

1 ] = a
∓q4g+1

1 , [b−1
2 , c−1

2 ] = a
∓q4g+2

2 , · · · , [b−1
g , c−1

g ] = a
∓q5g
g ,

[a−1
1 , c1] = b

∓q5g+1

1 , [a−1
2 , c2] = b

∓q5g+2

2 , · · · , [a−1
g , cg] = b

∓q6g
g ,

Notice that by setting q1 = · · · = q6g = ±1, we obtain the symplectic 6-manifolds with trivial
the first homology group in integer coefficients. To realize the first homology groups stated as in
(ii), we simply set q1 ≥ 2, qi ≥ 1, and q1 = q6g−k+1 = · · · = q6g = 0, qi ≥ 2 (for 1 ≤ i ≤ 6g − k),
respectively in the above presentation.

Remark 3. Each non-trivial coisotropic Luttingery kills both the coisotroptic and it’s dual
isotroptic submanifolds and has no effect on third homology and the Euler characteristic. The
Betti numbers of X(q1, · · · , q6g) can be computed. For example, when q1 = · · · = q6g =
±1, we compute the Euler characteristic and the Betti numbers of X(q1, · · · , q6g) as follows:
χ(X(q1, · · · , q6g)) = χ(X(g, g, g)) = 8(1 − g)3, b1(X(q1, · · · , q6g)) = b1(X(g, g, g)) − 6g = 0 =
b5(X(q1, · · · , q6g)), b2(X(q1, · · · , q6g)) = b2(X(g, g, g))−6g = 12g2−6g+3 = b4(X(q1, · · · , q6g)),
b3(X(q1, · · · , q6g)) = b3(X(g, g, g)) = 8g3 + 12g.
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